Not all agents are equal: scaling up distributed POMDPs for agent networks

نویسندگان

  • Janusz Marecki
  • Tapana Gupta
  • Pradeep Varakantham
  • Milind Tambe
  • Makoto Yokoo
چکیده

Many applications of networks of agents, including mobile sensor networks, unmanned air vehicles, autonomous underwater vehicles, involve 100s of agents acting collaboratively under uncertainty. Distributed Partially Observable Markov Decision Problems (Distributed POMDPs) are well-suited to address such applications, but so far, only limited scale-ups of up to five agents have been demonstrated. This paper escalates the scale-up, presenting an algorithm called FANS, increasing the number of agents in distributed POMDPs for the first time into double digits. FANS is founded on finite state machines (FSMs) for policy representation and expoits these FSMs to provide three key contributions: (i) Not all agents within an agent network need the same expressivity of policy representation; FANS introduces novel heuristics to automatically vary the FSM size in different agents for scaleup; (ii) FANS illustrates efficient integration of its FSM-based policy search within algorithms that exploit agent network structure; (iii) FANS provides significant speedups in policy evaluation and heuristic computations within the network algorithms by exploiting the FSMs for dynamic programming. Experimental results show not only orders of magnitude improvements over previous best known algorithms for smaller-scale domains (with similar solution quality), but also a scale-up into double digits in terms of numbers of agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DALD:-Distributed-Asynchronous-Local-Decontamination Algorithm in Arbitrary Graphs

Network environments always can be invaded by intruder agents. In networks where nodes are performing some computations, intruder agents might contaminate some nodes. Therefore, problem of decontaminating a network infected by intruder agents is one of the major problems in these networks. In this paper, we present a distributed asynchronous local algorithm for decontaminating a network. In mos...

متن کامل

Scalable Planning and Learning for Multiagent POMDPs

Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable appr...

متن کامل

Efficient planning for real world multi-agent domains

Partially Observable Markov Decision Problems (POMDPs) and Distributed Partially Observable Markov Decision Problems (Distributed POMDPs) are evolving as popular models for sequential decision making in agents/teams of agents, operating in partially observable environments. This has been primarily because of their ability to capture the different kinds of uncertainty present in real world envir...

متن کامل

Adaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems

This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...

متن کامل

Scalable Planning and Learning for Multiagent POMDPs: Extended Version

Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008